skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Zhiyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A table is composed of data values that are organized in %a 2D matrix with rows and columns providing implicit structural information. A table is usually accompanied by secondary information such as the caption, page title, etc., that form the textual information. Understanding the connection between the textual and structural information is an important, yet neglected aspect in table retrieval, as previous methods treat each source of information independently. In this paper, we propose StruBERT, a structure-aware BERT model that fuses the textual and structural information of a data table to produce context-aware representations for both textual and tabular content of a data table. We introduce the concept of horizontal self-attention, which extends the idea of vertical self-attention introduced in TaBERT and allows us to treat both dimensions of a table equally. StruBERT features are integrated in a new end-to-end neural ranking model to solve three table-related downstream tasks: keyword- and content-based table retrieval, and table similarity. We evaluate our approach using three datasets, and we demonstrate substantial improvements in terms of retrieval and classification metrics over state-of-the-art methods. 
    more » « less
  2. This paper presents the design, implementation, and experimental evaluation of a wireless biomedical implant platform exploiting the magnetoelectric effect for wireless power and bi-directional communication. As an emerging wireless power transfer method, magnetoelectric is promising for mm-scaled bio-implants because of its superior misalignment sensitivity, high efficiency, and low tissue absorption compared to other modalities [46, 59, 60]. Utilizing the same physical mechanism for power and communication is critical for implant miniaturization, but low-power magnetoelectric uplink communication has not been achieved yet. For the first time, we design and demonstrate near-zero power magnetoelectric backscatter from the mm-sized implants by exploiting the converse magnetostriction effects. The system for demonstration consists of an 8.2-mm3 wireless implantable device and a custom portable transceiver. The implant's ASIC interfacing with the magnetoelectric transducer encodes uplink data by changing the transducer's load, resulting in resonance frequency changes for frequency-shift-keying modulation. The magnetoelectrically backscattered signal is sensed and demodulated through frequency-to-digital conversion by the external transceiver. With design optimizations in data modulation and recovery, the proposed system archives > 1-kbps data rate at the 335-kHz carrier frequency, with a communication distance greater than 2 cm and a bit error rate less than 1E-3. Further, we validate the proposed system for wireless stimulation and sensing, and conducted ex-vivo tests through a 1.5-cm porcine tissue. The proposed magnetoelectric backscatter approach provides a path towards miniaturized wireless bio-implants for advanced biomedical applications like closed-loop neuromodulation. 
    more » « less
  3. Abstract Ranking models are the main components of information retrieval systems. Several approaches to ranking are based on traditional machine learning algorithms using a set of hand-crafted features. Recently, researchers have leveraged deep learning models in information retrieval. These models are trained end-to-end to extract features from the raw data for ranking tasks, so that they overcome the limitations of hand-crafted features. A variety of deep learning models have been proposed, and each model presents a set of neural network components to extract features that are used for ranking. In this paper, we compare the proposed models in the literature along different dimensions in order to understand the major contributions and limitations of each model. In our discussion of the literature, we analyze the promising neural components, and propose future research directions. We also show the analogy between document retrieval and other retrieval tasks where the items to be ranked are structured documents, answers, images and videos. 
    more » « less
  4. Table search aims to retrieve a list of tables given a user's query. Previous methods only consider the textual information of tables and the structural information is rarely used. In this paper, we propose to model the complex relations in the table corpus as one or more graphs and then utilize graph neural networks to learn representations of queries and tables. We show that the text-based table retrieval methods can be further improved by graph-based predictions which fuse multiple field-level information. 
    more » « less
  5. null (Ed.)
    We describe the development, characteristics and availability of a test collection for the task of Web table retrieval, which uses a large-scale Web Table Corpora extracted from the Common Crawl. Since a Web table usually has rich context information such as the page title and surrounding paragraphs, we not only provide relevance judgments of query-table pairs, but also the relevance judgments of query-table context pairs with respect to a query, which are ignored by previous test collections. To facilitate future research with this benchmark, we provide details about how the dataset is pre-processed and also baseline results from both traditional and recently proposed table retrieval methods. Our experimental results show that proper usage of context labels can benefit previous table retrieval methods. 
    more » « less
  6. null (Ed.)
    Ad hoc table retrieval is the problem of identifying the most relevant datasets to a user's query. We present an approach to the problem that builds a knowledge graph by combining information about the collection of tables with external sources such as WordNet and pretrained Glove embeddings. We apply multi-relational graph convolutional networks to learn embeddings for the knowledge graph nodes and utilize three different methods to create vectors representing the tables and queries from these embeddings. We create a novel learning-to-rank neural architecture that incorporates the multiple embeddings in order to improve table retrieval results. We evaluate our approach using two large collections of tables from public WikiTables and Web tables data, demonstrating substantial improvements over state-of-the-art methods in table retrieval. 
    more » « less
  7. null (Ed.)
    We address the problem of ad hoc table retrieval via a new neural architecture that incorporates both semantic and relevance matching. Understanding the connection between the structured form of a table and query tokens is an important yet neglected problem in information retrieval. We use a learning- to-rank approach to train a system to capture semantic and relevance signals within interactions between the structured form of candidate tables and query tokens. Convolutional filters that extract contextual features from query/table interactions are combined with a feature vector based on the distributions of term similarity between queries and tables. We propose using row and column summaries to incorporate table content into our new neural model. We evaluate our approach using two datasets, and we demonstrate substantial improvements in terms of retrieval metrics over state-of-the-art methods in table retrieval and document retrieval, and neural architectures from sentence, document, and table type classification adapted to the table retrieval task. Our ablation study supports the importance of both semantic and relevance matching in the table retrieval. 
    more » « less
  8. A search engine's ability to retrieve desirable datasets is important for data sharing and reuse. Existing dataset search engines typically rely on matching queries to dataset descriptions. However, a user may not have enough prior knowledge to write a query using terms that match with description text. We propose a novel schema label generation model which generates possible schema labels based on dataset table content. We incorporate the generated schema labels into a mixed ranking model which not only considers the relevance between the query and dataset metadata but also the similarity between the query and generated schema labels. To evaluate our method on real-world datasets, we create a new benchmark specifically for the dataset retrieval task. Experiments show that our approach can effectively improve the precision and NDCG scores of the dataset retrieval task compared with baseline methods. We also test on a collection of Wikipedia tables to show that the features generated from schema labels can improve the unsupervised and supervised web table retrieval task as well. 
    more » « less